Development of Soft Nanocomposite Materials and Their Applications in Cell Culture and Tissue Engineering

نویسنده

  • K Haraguchi
چکیده

Novel soft nanocomposite materials with unique organic/inorganic network structures have been developed by extending the strategy of "organic/inorganic nanocomposites" to the field of soft materials. The structures described here were synthesized by in-situ free-radical polymerization of various monomers in the presence of exfoliated clay (hectorite) in aqueous media. The nanocomposite hydrogels (NC gels) and soft nanocomposites (M-NCs) obtained were flexible and transparent soft materials, regardless of the clay content, that could be prepared in various shapes and surface forms, each consisting of individually different polymer/clay network structures. Owing to these unique network structures, both NC gels and M-NCs showed extraordinary mechanical properties such as ultrahigh elongation at break and widely controlled modulus and strength, which could overcome the problems (e.g., mechanical fragility, optical turbidity, poor processing ability) associated with conventional chemically crosslinked materials. In addition, the NC gels and M-NCs exhibited a number of new characteristics related to optical anisotropy, morphology, biocompatibility, stimulus sensitivity and cell culture. In the present review, we outline the novel features of these soft nanocomposites, and demonstrate their potential as soft culture substrates useful for tissue engineering as well as soft, transparent, absorbing, and mechanically tough biomaterials for many bio-applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue Engineering Scaffolds: History, Types and Construction Methods

Tissue engineering is a rapidly growing research field, potentially capable of de novo tissue and organ construction. This approach is used to improve efficiency both in the tissue and cell culture. This method is required to provide bodies in vivo three-dimensional conditions outside of the body (ex vivo). To achieve this goal, given tissue cells are cultured on the tissue engineering scaffold...

متن کامل

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

متن کامل

Electrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering

In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...

متن کامل

Effect of Nanoclay Addition on the Properties of Polycaprolactone Nanocomposite Scaffolds Containing Adipose Derived Mesenchymal Stem Cells used in Soft Tissue Engineering

Tissue-engineering scaffolds provide biological and mechanical frameworks for cell adhesion, growth, and differentiation. Nanofibrous scaffolds mimic the native extracellular matrix (ECM) and play a significant role in formation and remodeling of tissues and/or organs . One way to mimic the desired properties of fibrous ECM is adding nanoparticles into the polymer matrix. In the current study, ...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2012